cation. So McCarthy’s laboratory and
McCarthy himself were a wonderful
liaison for me because LISP process-
ing was a wonderful vehicle for what
you might call nonnumerical pro-
gramming—programming which
realizes different forms of thinking
than numerical mathematics. That
was a vehicle for doing all my work.
In fact, LISP led to the design of
Metalanguage (ML).

I left Stanford after two years,
having had reasonable success with
this reasoning tool. But it was very
rigid. That is, the way I could inter-
act with this machine in helping me
to reason, was that I could ask it to do
certain formal transformations, and
it would do them correctly. By the
way, the real pioneer of machine-
assisted reasoning was deBruijn in
Holland who invented his Automath
system before this; T didn't know
about it at the time.

But the way that I wanted LCF to
help in the reasoning business was
this: If you’ve got a machine helping
you, you want to not only get it to
check what you're doing, but to be
able to communicate to it certain
general strategies for reasoning. I
needed a medium by which I could
communicate to the machine certain
general procedures for reasoning
that it would later invoke, at my be-
hest, on particular problems. I would
not have to lead it through the ele-
mentary steps every time. I wanted to
be able to give it larger and larger
chunks of reasoning power, built up
from the smaller chunks. So 1 would
have to have a language by which I
could communicate to the machine
these tactics or strategies.

Then, you come back to the prob-
lem of building houses on sand be-
cause the more languages you bring
into your process, the more possibili-
ties you have for appearing to talk
sense but are actually talking non-
sense. So the language we needed to
express the reasoning capabilities
had to be very robust. We use the
term “metalanguage,” for a language
that talks about other languages.
That’'s why ML came into existence.
It was the metalanguage with which
we would interact with the machine
in doing verification. It had to have
what we call a rigorous type structure
because that’s the way programming

languages avoid talking certain kinds
of nonsense. But it also had to be
very flexible because it was actually
going to be used, and I didn't want to
design a language that would slow
me down. It had to have certain fea-
tures that were at the frontier of pro-
gramming language design, such as
higher-order functions of the great-
est possible power, and also side ef-
fects and exceptions. An exception is
just a way of getting out of something
that you shouldn’t be doing because
i's not working. Since strategies
don’t work every so often, you use an
exception to say, “Wrap this up. I'm
going to try something else.” In a
programming language, an excep-
tion is absolutely vital. And it was
vital for this particular application.

All of this directed the design of
ML, which occurred in Edinburgh
with other colleagues from 1974
onward.

KE: That was a 12-year project?
RM: Yes, ML began just as a vehicle
for communicating proof strategies
within the LCF work. Malcolm
Newey and Lockwood Morris, both
of whom I had met at Stanford, and
later Christopher Wadsworth and
Mike Gordon came to work- with me,
and we created this language and
some mathematical understanding
for it.

The LCF system at Edinburgh
then became the language ML with
some particular reasoning power
expressed within that language.
Gradually, the language became
more and more important.

A Longtime Collaboration

K®: What was it like to collaborate with
people on developing a language over the
course of more than a decade? How did
you work together?

RM: That was a wonderful experi-
ence. It came together in ways that
could not be predicted or planned-
When I got to Edinburgh, 1 had a
research project funded by the Sci-
ence and Engineering Research
Council (the British equivalent of the
NSF). The first to join me were
Newey and Morris. We weren’t quite
clear what the language should be,
and we tossed ideas around among
ourselves. I remember Morris wrote
the first compiler for ML and left it
behind in Edinburgh six weeks after

he’'d finished it. Nobody ever found
any mistakes in it. It was the first
implementation of ML. And Newey
and I worked on other parts of the
implementation as well.

When Wadsworth and Gordon
came, we developed the language
more carefully so that it could serve
as a basis for really big reasoning
projects. At that point, the project
divided; the reasoning work went on
along one line, and language devel-
opment of ML itself went along an-
other. ML went from being a special
language for this particular task to a
general language. And that bap-
pened in a beautiful, but unplanned
way. One rnigpw-famous contributor
was an ltalian graduate student,
Luca Cardelli, who wanted a lan-
guage for his Ph.D. work, so he im-
plemented an extension of ML.
Then somebody else discovered this
was a good language to teach to stu-
dents. It then began a life as a gen-
eral-purpose language because we
started teaching it to second-year
undergraduate students. It turned
out to be a way of learning to pro-
gram.

KIB: Was that one of the surprises?
RM: Yes, one of the reasons it
turned out to be general-purpose
was because the demands of the ap-
plication—the LCF work—were so
strong that if a language could do all
of that, then it would also do a lot of
other things as well. That happened
in an uncontrolled way for a while.
People used different dialects either
because they liked experimenting in
language design, or because they
wanted it for teaching more clearly, 1
suppose.

About 1983, on suggestion of Ber-
nard Sufrin at Oxford, I felt we
ought to pull the threads together to
see if there was a bigger language
that comprised all the ideas people
had been tossing about. I produced a
proposal for standardizing this lan-
guage. We began to have very intense
discussions because language design
isn’t easy, and people disagree about
it. But we acquired a group of about
15 people who worked via email. We
had a distributed effort involving
David MacQueen at Bell Labs. So we
began to play with the design and
tried to firm it up.

Then another splendid thing hap-

COMMUNICATIONS OF THE AEM/ January 1993/ Vol 36, Nol 93

The great
challenge and
greatest
excitement
was that
we were
always
interacting
with three
things: the
design of the
language, its
implementation,
and the
formal
cdefinition
itself.

pened. MacQueen invented a new
upper level to the language that
made it more appropriate for large
programming exercises. This en-
abled you to write large modular
programs and assist “programming
in the large.” MacQueen had been in
Edinburgh working with Rod
Burstall, who had a mathematical
project which actually led to Mac-
Queen’s idea of modules of ML. So
some of the mathematical, or the the-
oretical research, fed into the design
of the language in that way.

For the next four to five years we
were standardizing this language. It
went through design after design. In
1989 we still didn’t all completely
agree, but those charged with writing
the formal definition of the language
published it with MIT Press.

KB®: What was the greatest challenge in
those 12 years?

RM: [n terms of the language de-
sign, for me it was creating the for-
mal definition, because the design
had to be enshrined in an absolutely
rigorous definition.

K®: Enshrined?

RM: Yes, it had to be expressed
completely rigorously. Not many lan-
guages have had that completely rig-
orous definition. Others have had it
in part. Our aim was to have not only
a definition that was completely rig-
orous, but was also quite small. The
language was supposed to be power-
ful but so harmonious and so well
structured that it didn’t take many
pages to write down the definition of
everything you could do in it. Even-
tually it took 100 pages, which is per-
haps an order of magnitude smaller
than for some powerful languages
like ADA, for which the formal defi-
nition is not easy.

For me, the greatest challenge and
the greatest excitement was that we
were always interacting with three
things: the design of the language, its
implementation (because it always
was being implemented experimen-
tally), and the formal definition it-
self. You would design something,
and then you would find out that you
could implement it well, perhaps, but
that you couldn’t write down the for-
mal definition very clearly because
the formal definition showed there
was something missing in the design.
So you'd go back to the design. Or

94 January 1993/Vol 36, Nol / COMMUMICATIONS OF YHE ACM

you might go back to the design be-
cause something was not imple-
mented very well.

Concurrency and Parallelism
KE: Let’'s move on to Calculus for Com-
municating Systems (CCS).
RM: The development of CCS also
went on for a long time. As Stanford,
I got interested in trying to under-
stand concurrent computing and
parallel computing programs. I tried
to express the meaning of concur-
rent computing in terms that had
been used for other programming
languages that were sequential. I
found it wasn't easy, and 1 felt that
concurrency "needed a conceptual
framework, which we did not have.
And I didn’t know what it should be.
Of course, | didn't know about his
work, but Carl-Adam Petri had al-
ready pursued such a goal. But my
motivation was actually to show how
you could build concurreat systems—
how you could create a conceptual
framework in which you could com-
pose and synthesize larger and larger
concurrent systems from smaller
ones and still retain a handle on what
it all means. That’s why I eventually
approached the algebraic method.
Algebra is about combining things to
make other things and the laws that
govern the ways you stick things to-
gether. In multiplication, A X B is a
more complicated thing than A or B.
Multiplication has certain laws. That
was exactly the same as parallel com-
position. Two programs, P in parallel
with Q, give you a more complicated
program, and that parallel composi-
tion obeys some algebraic laws. So
CCS was an attempt to algebraicize
the primitives of concurrency.

Concurrency Theory and
Hardware

KW®: To what extent does the hardware
affect the theory of concurrency? Doesn’t
it matter the way the processors are linked
and whether the machine is fine- or
coarse-grained?

RM: Yes, that's a big question be-
cause there are two things you might
be trying to do when you’re studying
parallelism. You might be studying
the meaning of a parallel program-
ming language that is going to run
on some hardware. Or you might be
trying to describe a concurrent sys-

